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Abstract

The modeling of a moving target for a single channel spaceborne SAR geometry has al-

ready been accomplished to a high degree of accuracy by Eldhuset et al., but extending the

model to include a SAR system that is equipped with multiple apertures (e.g. RADARSAT-

2, TerraSAR-X) still requires further work. The purpose of this short technical memo is

to do exactly that – to derive a set of equations of motion of a ground moving target for a

multi-channel spaceborne SAR. These equations of motion will be shown to be applicable

to both airborne and spaceborne multi-channel SAR systems in stripmap mode.

Résumé

Eldhuset et coll. ont déjà modélisé avec grande exactitude la géométrie de l’observation

d’une cible mobile par un RSO monocanal spatioporté. Toutefois, de nouveaux travaux sont

nécessaires pour adapter leur modèle à un RSO à ouvertures multiples (p. ex., RADARSAT-

2 ou TerraSAR-X). Les travaux menant au présent mémoire technique visaient à dériver un

ensemble d’équations de mouvement d’une cible terrestre mobile suivie par un RSO multi-

canal spatioporté. Nous montrons que l’on peut appliquer ces équations à l’observation en

bande, autant par un RSO multicanal aéroporté que spatioporté.
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Executive summary

Equations of motion of a ground moving target for a

multi-channel spaceborne SAR

S. Chiu, M.V. Dragos̆ević; DRDC Ottawa TM 2008-326; Defence R&D Canada –

Ottawa; March 2009.

Background: Both high resolution Synthetic Aperture Radar (SAR) processing and SAR

Ground Moving Target Indication (SAR-GMTI) require that a highly accurate imaging

geometry model be first established. This can be quite easily accomplished for the case of

an airborne platform, which is assumed to be moving along a straight line and transmitting

uniformly spaced pulses. This assumption requires good motion compensation and good

control of the pulse repetition frequency (PRF) as a function of ground speed. For an

orbiting platform, the gravitational force plays a key role in defining the satellite trajectory

and, thus, must be taken into account. Also, equations of motion of a moving target that

accurately model a SAR system equipped with multiple apertures (e.g. RADARSAT-2,

TerraSAR-X) are evidently absent in the open literature, partly because there were no multi-

aperture spaceborne SARs in the unclassified world prior to late 2007.

Principal results: The purpose of this short technical memo is to derive a set of equations

of motion that accurately describes a ground moving target in spaceborne multi-channel

SAR imaging geometry. A suitable multi-channel model of the target range history is

derived in the Earth Centered, Earth-Fixed (ECEF) frame of reference using linearization

for small angles as a function of the receive phase center index p (= 1, 2, 3, etc.) along the

antenna and the pulse (or slow) time t:

Rp(t) = R0 +(p−1)D(Ψ−Φ0)+(Vtr −Vsr)(t − t0)

+
(p−1)D

R0
(Vta −Vg)(t − t0)+

1

2

(

V 2
e −2VsVta

R0
+Atr

)

(t − t0)
2

The above range equation includes the following system parameters: R0 is the target range

at arbitrary time t0; D is the distance between the effective phase centers; Ψ is the so-

called squint angle between the radar broadside in the slant-range direction and the antenna

pointing vector; Φ0 is the direction of arrival angle (measured off-broadside from the SAR);

Vtr and Vsr are the radial velocity components of the target and the SAR, respectively; Vta is

the target velocity component in the along-track or flight direction; Vs and Vg are the SAR

orbital and ground speeds, respectively; Ve is the so-called effective velocity of the satellite;

and Atr is the target radial acceleration component. R0, Φ0, Vtr, Vta, and Atr are defined for

time t0. Vsr depends on Vs and Φ0 in a predictable way. Vs, Vg, and Ve vary slowly with time

and, therefore, may be evaluated anywhere in the neighborhood of t0.
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Significance of results: The accuracy of the equations of motion derived in this short

memo has been tested and validated using the recently acquired RADARSAT-2 MODEX

data. These equations of motion have been shown to be applicable to both airborne and

spaceborne stripmap imaging geometries and serve as a physical basis for further algorithm

development.
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Sommaire

Equations of motion of a ground moving target for a

multi-channel spaceborne SAR

S. Chiu, M.V. Dragos̆ević ; DRDC Ottawa TM 2008-326 ; R & D pour la défense

Canada – Ottawa ; mars 2009.

Introduction : Le traitement des données des radars à synthèse d’ouverture (RSO) de

haute résolution et l’indication de cibles terrestres mobiles au sol nécessitent l’établisse-

ment préalable d’un modèle très précis de la géométrie de la visée. Ce modèle est facile-

ment réalisé pour un RSO aéroporté pour lequel on peut postuler une trajectoire rectiligne

et l’émission régulière d’impulsions. Pour être valides, ces deux hypothèses nécessitent une

bonne compensation de mouvement et une régulation adéquate de la fréquence d’émission

des impulsions en fonction de la vitesse au sol. Dans le cas d’une plateforme orbitale, la

gravitation est un élément essentiel de la définition de la trajectoire et nous devons en tenir

compte. Or, dans les sources publiées, on ne retrouve pas d’équations de mouvement d’une

cible mobile permettant de modéliser avec exactitude un système RSO à ouvertures mul-

tiples (p. ex., RADARSAT-2 ou TerraSAR-X), notamment parce qu’avant la fin de 2007, il

n’existait aucun système satellisé semblable dans le domaine non classifié.

Résultats : Le présent mémoire technique présente notre dérivation d’un ensemble d’équa-

tions de mouvement décrivant avec exactitude une cible terrestre mobile observée par un

RSO multicanal spatioporté. Pour un repère géocentrique à axes fixes, nous avons dérivé

un modèle adéquat de l’évolution des distances entre la cible et un RSO multicanal, par

linéarisation des petits angles, en fonction de l’indice p (= 1, 2, 3, etc.) du centre de phase

de réception le long de l’antenne et le temps t de l’impulsion (lent) :

Rp(t) = R0 +(p−1)D(Ψ−Φ0)+(Vtr −Vsr)(t − t0)

+
(p−1)D

R0
(Vta −Vg)(t − t0)+

1

2

(

V 2
e −2VsVta

R0
+Atr

)

(t − t0)
2

Les équations ci-dessus pour la distance comportent les paramètres suivants : R0 est la

distance de la cible au temps arbitraire t0. D est la distance entre les centres effectifs de

phase. Ψ correspond à l’angle de concentration entre la position de rayonnement transverse

du radar dans le plan inclinaison-temps et le vecteur de pointage de l’antenne. Φ0 représente

la direction de l’angle d’incidence de l’écho (mesuré depuis le côté du RSO). Vtr et Vsr

sont respectivement les vitesses radiales de la cible et du RSO. Vta est la composante de

la vitesse de la cible le long de la bande observée ou de la trajectoire de vol. Vs et Vg sont

respectivement les vitesses du RSO en orbite et au sol. Ve est la vitesse effective du satellite.

Atr est la composante radiale de l’accélération de la cible. Les valeurs R0, Φ0, Vtr, Vta, et
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Atr sont définies pour le temps t0. Vsr dépend de Vs et Φ0 de façon prévisible. Puisque Vs,

Vg, et Ve varient lentement en fonction du temps, on peut les évaluer aux environs de t0.

Portée : Nous avons testé et validé l’exactitude des équations de mouvement qui figurent

dans le présent mémoire à l’aide de données RADARSAT-2 récemment acquises lors des

essais MODEX. Nous avons démontré qu’elles peuvent s’appliquer à la géométrie de l’ima-

gerie en bande (mode stripmap) par un radar aéroporté ou spatioporté. Elles constituent

également un fondement tangible pour la mise au point d’autres algorithmes.
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1 Introduction

High resolution Synthetic Aperture Radar (SAR) processing requires that a highly accurate

imaging geometry model be first established. For SAR Ground Moving Target Indica-

tion (SAR-GMTI), the underlying assumption that the radar scene is stationary must be

extended to include non-stationary scenes or moving targets. This can be quite easily ac-

complished for the case of an airborne platform [1], which is assumed to be moving along a

straight line and transmitting uniformly spaced pulses. This assumption requires good mo-

tion compensation and good control of the pulse repetition frequency (PRF) as a function

of ground speed. The same cannot be said about a spaceborne platform, where the earth’s

gravitational force plays a key role in defining the platform trajectory and the velocity of

the radar antenna footprint as it sweeps along the surface of the earth. The modeling of

a moving target for a single channel spaceborne SAR geometry has already been accom-

plished to a high degree of accuracy by Eldhuset et al. [2] [3]. However, the extension of

the model to include a SAR system that is equipped with multiple apertures is evidently ab-

sent in the open literature, partly because there were no existing spaceborne SAR systems

in the unclassified world equipped with such a capability until the launches of TerraSAR-X

and RADARSAT-2 in late 2007. The purpose of this short technical memo is to derive a

set of equations of motion of a ground moving target for a multi-channel spaceborne SAR.

These equations of motion will be shown to be applicable to both airborne and spaceborne

stripmap imaging geometries and serve as a physical basis for further algorithm develop-

ment.

2 Equations of Motion of a Moving Target

The relative position vector of a moving target with respect to an imaging SAR satellite, in

the earth centered earth fixed (ECEF) system, can be written as

R = Rt −Rs , (1)

where indices t and s denote ‘target’ and ‘satellite,’ respectively, and bold letters indicate

vectors. The magnitude of a vector is represented by the same symbol with the regular italic

font. In the ECEF frame, the earth motion is absorbed into the relative satellite motion.

The Doppler centroid and Doppler rate are proportional to Ṙ and R̈, respectively, where the

dot and double-dot notations indicate first and second derivatives with respect to time. A

common approach to the derivation of Ṙ and R̈ is to start from the identity [3]

R2 = R
T
R , (2)

and to differentiate it with respect to time. (•)T denotes the vector (or matrix) transpose.

DRDC Ottawa TM 2008-326 1



Differentiating both sides of (2) with respect to time, we get

2RṘ = Ṙ
T
R+R

T
Ṙ (3a)

Ṙ =
Ṙ

T
R

R
=

R
T
Ṙ

R
, (3b)

where A
T
B = B

T
A is obviously true for any two vectors A and B.

Equation (3b) can be rewritten as

Ṙ =
R

T

R
(Ṙt − Ṙs) (4a)

=
R

T

R
(Vt −Vs) (4b)

= Vtr −Vsr, (4c)

where Vt ≡ Ṙt is the velocity vector of the moving target, Vs ≡ Ṙs is the velocity vector

of the satellite, and

Vtr ≡

(

R

R

)T

Vt (5a)

Vsr ≡

(

R

R

)T

Vs , (5b)

are the projections of the target and satellite velocity vectors onto the line of sight (LOS)

or the radial direction, respectively. Also, the radial speed of a stationary target as “seen”

by the radar due to the platform motion is equal to −Vsr. Therefore, the Doppler shift at

the beam center induced by the motion of the platform (or the stationary clutter Doppler

centroid) is given by

fDC = 2
Vsr

λ
, (6)

and the Doppler shift due to the target’s radial speed is

fdc = −2
Vtr

λ
. (7)

Therefore, the total Doppler shift is given by

FDC = −2
Vr

λ
= −2

(Vtr −Vsr)

λ
. (8)

Again, differentiating both sides of (3a) with respect to time yields

2(Ṙ2 +RR̈) = R̈
T
R+ Ṙ

T
Ṙ+ Ṙ

T
Ṙ+R

T
R̈ (9a)

= 2RT
R̈+2ṘT

Ṙ (9b)

RR̈ = R
T
R̈+ Ṙ

T
Ṙ− Ṙ2 . (9c)

2 DRDC Ottawa TM 2008-326



Using the following definitions

Vt ≡ Ṙt (10a)

Vs ≡ Ṙs (10b)

At ≡ R̈t (10c)

As ≡ R̈s (10d)

A ≡ R̈ = R̈t − R̈s = At −As (10e)

Atr ≡ R
T
At/R , (10f)

(9c) can be rewritten as

RR̈ = R

(

R
T

R
At

)

−R
T
As +(Vt −Vs)

T (Vt −Vs)− (Vtr −Vsr)
2 (11a)

= RAtr −R
T
As +V 2

t −V
T
t Vs −V

T
s Vt +V 2

s − (V 2
tr −2VtrVsr +V 2

sr) (11b)

= V 2
s −R

T
As +RAtr +V 2

t −2Vs

(

V
T
s

Vs
Vt

)

−V 2
tr +2VtrVsr −V 2

sr . (11c)

Therefore,

R̈ =
V 2

e

R
−

V 2
sr

R
+Atr +

V 2
t

R
−

2VsVta

R
−

V 2
tr

R
+

2VtrVsr

R
, (12)

where

V 2
e ≡ V 2

s −R
T
As (13a)

Vta =

(

Vs

Vs

)T

Vt . (13b)

Ve is the so-called “effective velocity” often used in the spaceborne SAR processing to

model the range equation and Vta is the projection of the target velocity onto the direction of

platform velocity Vs, which is also called the along-track direction and may not necessarily

be parallel to the ground track.

The instantaneous slant range equation (or history) R(t) is the key to high precision SAR

processing. The accurate estimation of the effective velocity in the equation allows compli-

cated mathematical manipulations involving a satellite/earth geometry model to be avoided

and a simple hyperbolic approximation to be adopted in most high precision SAR process-

ing algorithms. The hyperbolic model can be further simplified and approximated using a

second order Taylor series expansion or a parabolic model without significantly incurring

further loss of accuracy, considering typical RADARSAT-2 dwell times and resolution.

This may not be true in general.

If Ṙ and R̈ in (4a) and (12) are evaluated at some arbitrary time t0, then the range equation

can be approximated by the Taylor series expansion:

R(t) ≈ R0 +Vr0(t − t0)+
Ar0

2
(t − t0)

2 , (14)

DRDC Ottawa TM 2008-326 3



where

R0 = R(t0) = |Rt(t0)−Rs(t0)| (15a)

Vr0 = Ṙ(t0) =
R

T
0

R0
[Vt(t0)−Vs(t0)] = Vtr −Vsr (15b)

Ar0 = R̈(t0) =
V 2

e −V 2
sr

R0
+

V 2
t −V 2

tr +2VtrVsr −2VsVta

R0
+Atr (15c)

≈
V 2

e −V 2
sr

R0
+

2VtrVsr −2VsVta

R0
+Atr . (15d)

V 2
t and V 2

tr are considered negligible with respect to ‘2VsVta’ and, therefore, are dropped in

(15d). If t0 is chosen to be the broadside time tb, then Vsr = 0 by definition and the radial

direction (subscripted by ‘r’) becomes exactly perpendicular to the flight direction or the

along-track direction (subscripted by ‘a’). Under this condition, (15b) and (15d) become

Vrb = Ṙ(tb) =
R

T
b

Rb

Vt(tb) = Vtr (16a)

Arb ≈ R̈(tb) =
V 2

e −2VsVta

Rb

+Atr , (16b)

where Vtr and Atr are now the target’s down-range (or across-track) velocity and accelera-

tion components, respectively, and Rb is the broadside range of the moving target.

3 Two-Channel SAR

The use of a parabolic model is useful in the derivation of range equations for multi-channel

SAR systems. In this section the range equation for the second aperture of a two-channel

SAR is derived.

3.1 Local Frame of Reference

In order to continue with our derivations, we first define a local flight (LF) frame of refer-

ence for the radar as shown in Figure 1, where d is defined as the unit vector pointing down

from the radar’s center of gravity to the center of the earth. To define the second axis, we

vector cross-multiply d with the radar’s velocity vector Vs to form the right pointing unit

vector r:

r =
d×Vs

|d×Vs|
. (17)

Then the third unit vector, which completes the local reference frame, is given by

f = r×d . (18)

We should point out that Vs is not necessarily in the exact same direction as f , as illustrated

in Figure 1
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θ

θ
θ

ϕ+

ϕ+

Figure 1: Local reference frame of radar.
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3.2 Transformation Matrix

We now derive the transformation matrix from the LF reference frame to the ECEF refer-

ence frame. To begin, we express the unit vector d in the ECEF frame:

d = −
Rs

|Rs|
(19a)

= −
1

Rs





Rsx

Rsy

Rsz



 . (19b)

Then r becomes

r =
d×Vs

|d×Vs|
(20a)

=
d×Vs

Vhor

(20b)

=
1

RsVhor





RszVsy −RsyVsz

RsxVsz −RszVsx

RsyVsx −RsxVsy



 , (20c)

where

Vhor = |d×Vs| (21a)

Vs =





Vsx

Vsy

Vsz



 . (21b)

Vhor is obviously the horizontal velocity component of the radar and can be easily shown

to be

Vhor =
√

V 2
sx +V 2

sy +V 2
sz −V 2

ver , (22)

where Vver is the vertical velocity component of the radar platform and is given by

Vver =
R

T
s

Rs
Vs =

RsxVsx +RsyVsy +RszVsz

Rs
. (23)

We are now ready to express the forward unit vector f in the ECEF frame as

f = r×d = −d× r (24a)

=
1

Rs





Rsx

Rsy

Rsz



×
1

RsVhor





RszVsy −RsyVsz

RsxVsz −RszVsx

RsyVsx −RsxVsy



 (24b)

=
1

RsVhor





RsVsx −RsxVver

RsVsy −RsyVver

RsVsz −RszVver



 . (24c)

6 DRDC Ottawa TM 2008-326



Finally, the transformation matrix from the LF reference frame to the ECEF frame [4] is

simply

Γ f =
[

f r d
]

(25a)

=
1

RsVhor





RsVsx −RsxVver RszVsy −RsyVsz −RsxVhor

RsVsy −RsyVver RsxVsz −RszVsx −RsyVhor

RsVsz −RszVver RsyVsx −RsxVsy −RszVhor



 . (25b)

3.3 Antenna Look Vector

Let the ideal look direction of the antenna in the LF frame, with an off-nadir angle θ
pointing at a zero Doppler point on the surface of the earth, be

ũ0 =





0

sinθ
cosθ



 . (26)

Then the actual antenna look vector (or pointing vector) in the local reference frame of the

radar is given by

ũ = Γϕũ0 (27a)

≈





−ϕy sinθ+ϕp cosθ
sinθ
cosθ



 , (27b)

where Γϕ is the yaw-pitch rotation matrix, and ϕy and ϕp are the yaw and pitch angles

about the axes d and r, respectively. We are assuming that ϕy and ϕp correspond to a

LOS within the beam, but not necessarily at its center. For RADARSAT-2, ϕy and ϕp

are typically small (≪ 1) in the ECEF frame due to the zero-Doppler beam steering. The

rotation matrix Γϕ can, therefore, be shown as

Γϕ = MrMd =





1 −ϕy ϕp

ϕy 1 ϕyϕp

−ϕp 0 1



 (28a)

≈





1 −ϕy ϕp

ϕy 1 0

−ϕp 0 1



 , (28b)

where

Mr =





cosϕp 0 sinϕp

0 1 0

−sinϕp 0 cosϕp



 ≈





1 0 ϕp

0 1 0

−ϕp 0 1



 (29a)

Md =





cosϕy −sinϕy 0

sinϕy cosϕy 0

0 0 1



 ≈





1 −ϕy 0

ϕy 1 0

0 0 1



 . (29b)
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The term, ϕyϕp, is considered negligible [4] and is set to zero in (27b) and (28b). In the

ECEF frame, the antenna look vector u is then given by

u = Γ f ũ = Γ f Γϕũ0 . (30)

We should note that the look vector u is not necessarily in the direction of the beam center,

rather it points to the direction of the target of interest within the beam footprint.

3.4 Displacement Vector

Let D̃ denote the vector pointing from the effective phase center of the aft sub-aperture to

the effective phase center of the fore sub-aperture in the LF frame, D̃ can then be expressed

as

D̃ = Γψ





D

0

0



 ≈ D





1

ψy

−ψp



 , (31)

where

Γψ = Γϕ(ϕ = ψ) ≈





1 −ψy ψp

ψy 1 0

−ψp 0 1



 , (32)

and ψy and ψp are the pitch and yaw angles (or the orientation) of the antenna, representing

the attitude of the spacecraft in the LF frame of reference. In the ECEF frame, D̃ becomes

D = Γ f D̃ = DΓ f





1

ψy

−ψp



 . (33)

3.5 Range Equations for Multiple Phase Centers

A two-aperture SAR-MTI system is again assumed in the following derivations with the

understanding that the derived equations can be generalized to a multi-aperture system.

Let Rs1 and Rs2 denote the position vectors of the antenna’s two effective (or two-way)

phase centers in the ECEF frame, respectively. The aft antenna phase center Rs2 is then

displaced from the fore antenna phase center Rs1 by −D. For the case of RADARSAT-2,

the displacement vector D is closely aligned with the radar’s velocity vector Vs. Perfect

alignment would be optimal because it would allow the aft phase center to pass through

the same ECEF position as the fore phase center with a time delay of D/Vs, where D is

the distance between the two effective phase centers. This perfect alignment would also

mean that the whole antenna is ideally steered, generating a zero Doppler centroid in the

clutter Doppler spectrum. In the presence of a non-zero Doppler centroid, there exists a

non-zero across-track component of D, which translates into a small across-track baseline.
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In the case of a real spaceborne SAR-MTI system, such as the RADARSAT-2 MODEX,

this small cross-track component is always present and, therefore, must be compensated

for or taken into account in the system modeling.

The slant-range vector R2 from the aft antenna phase center to the target can, therefore, be

expressed as

R2 = Rt −Rs2 (34a)

= Rt − (Rs1 −D) (34b)

= R1 +D , (34c)

where R1 = Rt −Rs1 and Rs2 = Rs1 −D. Then the projections of these slant-range

vectors, R1 and R2, along the look vector u direction are given by

R1 = R
T
1 u (35a)

R2 = R
T
2 u = (RT

1 +D
T )u = R1 +D

T
u (35b)

= R1 +(Γ f D̃)T
Γ f ũ = R1 + D̃

T
Γ

T
f Γ f ũ (35c)

= R1 + D̃
T
ũ . (35d)

From (27b) and (31), (35d) becomes

R2(t) ≈ R1(t)+D
[

1 ψy −ψp

]





−ϕy sinθ+ϕp cosθ
sinθ
cosθ



 (36a)

= R1(t)+D[(ψy −ϕy)sinθ− (ψp −ϕp)cosθ] (36b)

= R1(t)+D(Ψ−Φ) , (36c)

where

Ψ =ψy sinθ−ψp cosθ (37a)

Φ =ϕy sinθ−ϕp cosθ . (37b)

Ψ and Φ are now measured in the slant-range plane. As the antenna footprint sweeps

across the target, the pitch angle ϕp hardly changes (i.e. remains virtually constant) such

that ϕp ≈ψp, resulting in Ψ−Φ≈ (ψy−ϕy)sinθ. In the case of RADARSAT-2, ψy and ψp

are usually small but non-zero such that the beam center is not located exactly at the zero-

Doppler point on the surface of the earth (in the ECEF frame). This residual beam squint

Ψ generates a small constant along-track interferometric phase, which is usually removed

by the digital-balance processing of the signal channels and can, therefore, be ignored. For

the sake of completeness, however, we shall keep the term in (36c). Then, the zeroth-order

coefficient of the Taylor expansion of R2(t) evaluated at arbitrary time t0 can be expressed

as

R2(t0) = R1(t0)−D [Φ(t0)−Ψ] . (38)
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Next, we derive the first-order coefficient of the Taylor series expansion of R2(t). From

(34c), we obtain

R2
2 = (R1 +D)T (R1 +D) (39a)

R2Ṙ2 = (R1 +D)T (Ṙ1 + Ḋ) (39b)

Ṙ2 =
R

T
1 Ṙ1 +R

T
1 Ḋ+D

T
Ṙ1 +D

T
Ḋ

R2
(39c)

=
R1Ṙ1

R2
+

R
T
1 Ḋ

R2
+

D
T
Ṙ1

R2
+

D
T
Γ̇ f D̃

R2
(39d)

≈ Ṙ1 +
R

T

R
Ḋ+

D
T

R
Ṙ+

O(D2)

R
(39e)

≈ Ṙ1 +u
T
Ḋ+

D
T

R
(Vt −Vs) , (39f)

where it can be shown that R
T
1 Ṙ1 = R1Ṙ1, R1 ≈ R2 = R, and the O(D2) term can be

neglected.

First, we derive the second term in (39f):

u
T
Ḋ = u

T ∂

∂t

(

Γ f D̃
)

= u
T
(

Γ̇ f D̃+Γ f
˙̃
D

)

= u
T
Γ̇ f D̃ , (40)

where we have assumed that the spacecraft attitude is not changing in the LF frame such

that time derivatives of ψy and ψp (or ˙̃
D) are equal to zero in the imaging time inter-

val. We also assume, for simplicity, that ψy and ψp are small. This is normally true for

RADARSAT-2, which utilizes dynamic antenna squinting to constantly steer the beam to a

zero Doppler point on the surface of the earth. Therefore, (40) becomes

u
T
Ḋ = u

T
Γ̇ f D





1

ψy

−ψp



 ≈ u
T
Γ̇ f D





1

0

0



 . (41)

Here, we need to find the first time derivative of Γ f (or Γ̇ f ), which can be shown to be

Γ̇ f =
1

RsVhor





ṘsVsx +RsAsx −VsxVver −RsxV̇ver RszAsy −RsyAsz −VsxVhor −RsxV̇hor

ṘsVsy +RsAsy −VsyVver −RsyV̇ver RsxAsz −RszAsx −VsyVhor −RsyV̇hor

ṘsVsz +RsAsz −VszVver −RszV̇ver RsyAsx −RsxAsy −VszVhor −RszV̇hor



 .

(42)

where terms of the type VsxVsy, VsxVsz, and VszVsy cancel out in the second column of (42)

and are, therefore, dropped. We can further simplify (42) by noting that Ṙs ≈ 0, V̇hor ≈ 0,

and V̇ver ≈ 0:

Γ̇ f ≈
1

RsVhor





RsAsx −VsxVver RszAsy −RsyAsz −VsxVhor

RsAsy −VsyVver RsxAsz −RszAsx −VsyVhor

RsAsz −VszVver RsyAsx −RsxAsy −VszVhor



 . (43)
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Therefore, (41) becomes

u
T
Ḋ ≈

D

RsVhor

u
T





RsAsx −VsxVver

RsAsy −VsyVver

RsAsz −VszVver



 (44a)

=
D

Vhor

u
T
As −

DVver

RsVhor

u
T
Vs (44b)

≈
D

Vhor

u
T
As . (44c)

The last term in (44b) is very small, since the look vector u is virtually perpendicular to Vs

(i.e. u ⊥ Vs) in the ECEF frame, and is, therefore, ignored.

We now derive the last term of (39f). From (25b) and (33),

D
T

R
(Vt −Vs)

=
D

R

[

1 ψy −ψp

]

Γ
T
f



Vt −





Vsx

Vsy

Vsz







 (45a)

≈
D

[

1 0 0
]

RRsVhor





RsVsx −RsxVver RsVsy −RsyVver RsVsz −RszVver

RszVsy −RsyVsz RsxVsz −RszVsx RsyVsx −RsxVsy

−RsxVhor −RsyVhor −RszVhor





×



Vt −





Vsx

Vsy

Vsz







 (45b)

=
D

[

RsVsx −RsxVver RsVsy −RsyVver RsVsz −RszVver

]

RRsVhor



Vt −





Vsx

Vsy

Vsz







 , (45c)

where ψy ≪ 1, ψp ≪ 1, and they are neglected in (45b). Also by noting that

RsV
T
s −VverR

T
s =

[

RsVsx −RsxVver RsVsy −RsyVver RsVsz −RszVver

]

(46a)

Rs = Rs +Rt −Rt = R+Rt (46b)

V
T
s Vt = VsVta (46c)

(R+Rt)
T
Vt = RVtr +R

T
t Vt ≈ RVtr , (46d)
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we can rewrite (45c) as

D
T

R
(Vt −Vs) ≈

D

RRsVhor

[(

RsV
T
s −VverR

T
s

)

Vt

]

+
D

RRsVhor

[

−RsV
2
s +Vver (RsxVsx +RsyVsy +RszVsz)

]

(47a)

=
D

RRsVhor

[(

RsV
T
s −VverR

T
s

)

Vt −RsV
2
s +VverR

T
s Vs

]

(47b)

=
D

RRsVhor

[

RsV
T
s Vt −Vver (R+Rt)

T
Vt −RsV

2
s +V 2

verRs

]

(47c)

=
D

RRsVhor

(

RsVsVta −RVverVtr −RsV
2
s +RsV

2
ver

)

(47d)

=D

[(

Vs

Vhor

)

Vta

R
−

(

Vver

Vhor

)

Vtr

Rs
−

(

Vs

Vhor

)

Vs

R
+

(

Vver

Vhor

)

Vver

R

]

, (47e)

where Vta and Vtr are along-track and radial speeds of the moving target, respectively.

Finally, (47e) can be further simplified by noting that Vhor ≈Vs and Vver/Vhor ≪ 1, yielding

D
T

R
(Vt −Vs) ≈

D

R
(Vta −Vs) . (48)

Putting everything together, (39f) becomes

Ṙ2 =Ṙ1 +
D

Vhor

u
T
As +

D

R
(Vta −Vs) (49a)

=Ṙ1 +
D

R
Vta −

D

RVhor

(

VsVhor −Ru
T
As

)

(49b)

≈Ṙ1 +
D

R
Vta −

D

RVs

(

V 2
s −R

T
As

)

(49c)

=Ṙ1 −
D

R

(

V 2
e

Vs
−Vta

)

(49d)

≈Ṙ1 −
D

R
(Vg −Vta) , (49e)

where we make use of V 2
e ≡V 2

s −R
T
As (13a) and Vg ≈V 2

e /Vs. The latter is the velocity of

the beam footprint that moves along the surface of the earth and the approximation sign is

mainly due to the fact that the satellite orbit is only approximately circular. Therefore, the

first-order coefficient of the Taylor expansion of R2(t) evaluated at time t0 can be written

as

Ṙ2(t0) =Ṙ1(t0)−
D

R(t0)
(Vg −Vta) (50a)

=(Vtr −Vsr)−
D

R(t0)
(Vg −Vta) . (50b)
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Similarly, we derive the second-order coefficient of the Taylor series expansion of R2(t)
by taking the time derivative of (49e), which simply yields R̈2 ≈ R̈1. Therefore, the Taylor

expansion of R2(t) (up to the second order) evaluated at arbitrary time t0 can be written as

R2(t) = R(t0)−D [Φ(t0)−Ψ]+

[

(Vtr −Vsr)−
D

R(t0)
(Vg −Vta)

]

(t − t0)

+
1

2

(

V 2
e −2VsVta

R(t0)
+Atr

)

(t − t0)
2

.

(51)

We are now ready to generalize the moving target range equation (51) for a multi-channel

SAR system (i.e. with multiple phase centers):

Rp(t) = R0 +(p−1)D(Ψ−Φ0)+(Vtr −Vsr)(t − t0)

+
(p−1)D

R0
(Vta −Vg)(t − t0)+

1

2

(

V 2
e −2VsVta

R0
+Atr

)

(t − t0)
2

,
(52)

where R0 = R(t0), Φ0 = Φ(t0); Vtr, Vta, and Atr are defined for time t0; p = 1,2,3, ... (for

phase center 1, 2, 3, etc.); Vsr depends on Vs and Φ0 in a predictable way; Vs, Vg, and Ve

vary slowly with time and, therefore, may be evaluated anywhere in the neighborhood of

t0.

If we choose t0 to be the broadside time tb, then Φ and Vsr(=−VsΦ) become zero, resulting

in

Rp(t) = Rb +(p−1)DΨ+Vtr (t − tb)+
(p−1)D

Rb

(Vta −Vg)(t − tb)

+
1

2

(

V 2
e −2VsVta

Rb

+Atr

)

(t − tb)
2

,

(53)

where subscript b denotes the broadside time. We can express (52) in a form that is appli-

cable to both spaceborne and airborne geometries as follows:

Rp(t) =R0 +(p−1)D(Ψ−Φ0)+(Vtr +VsΦ0)Tpri(m−m0)+ ...

(p−1)D

R0
(Vta −Vg)Tpri(m−m0)+

(

VsVg −2VsVta

2R0
+

Atr

2

)

T 2
pri(m−m0)

2 (54a)

=R0 +(p−1)D(Ψ−Φ0)+VsTpri

(

Vtr

Vs
−Φ0

)

(m−m0)+ ...

(p−1)DVsTpri

R0

(

Vta

Vs
−

Vg

Vs

)

(m−m0)+ ...

V 2
s T 2

pri

2R0

(

Vg

Vs
−2

Vta

Vs
+

R0

V 2
s

Atr

)

(m−m0)
2 (54b)

=R0 +D(Ψ−Φ0)(p−1)+Ds(µ+Φ0)(m−m0)+ ...

DDs

R0
(ν−β2)(p−1)(m−m0)+

D2
s

2R0
(β2 −2ν+η)(m−m0)

2 , (54c)
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where

β2 ≡
V 2

e

V 2
s

≈
Vg

Vs
=

Dg

Ds
≤ 1 (55a)

Dg ≡VgTpri (55b)

Ds ≡VsTpri (55c)

ν ≡
Vta

Vs
(55d)

µ ≡
Vtr

Vs
(55e)

η ≡
R0

V 2
s

Atr (55f)

m0 ≡
t0

Tpri
. (55g)

Tpri is the pulse repetition interval, and m is pulse index in slow time. Notably, the effect of

gravitational acceleration is completely absorbed into the parameter β2 ≤ 1. Clearly, (54c)

is also applicable to airborne imaging geometry by setting β2 = 1 since, for the airborne

case, the platform is assumed to be moving along a straight line and transmitting uniformly

spaced pulses. This assumption, however, requires good motion compensation and good

control of the pulse repetition frequency (PRF) as a function of ground speed, such that the

SAR ground speed Vg is kept the same as its platform speed Vs (or Dg = Ds).

Finally, (54c) can be re-expressed for the case when t0 = tb as follows:

Rp(t) = Rb +DΨ(p−1)+Dsµ(m−mb)+
DDs

Rb

(ν−β2)(p−1)(m−mb)

+
D2

s

2Rb

(β2 −2ν+η)(m−mb)
2 .

(56)

As stated earlier, Ψ can be compensated by channel balancing and, therefore, may be

ignored. Often, η (the normalized target radial acceleration) is also ignored under the

assumption that the moving target is not accelerating. In this case, (56) yields

Rp(t) = Rb +Dsµ(m−mb)+
DDs

Rb

(ν−β2)(p−1)(m−mb)+
D2

s

2Rb

(β2 −2ν)(m−mb)
2 ,

(57)

where subscript b, again, denotes that the Taylor series expansion is evaluated at the broad-

side time tb.

The accuracy of the equations of motion derived above has been tested and validated using

the recently acquired RADARSAT-2 MODEX data [5] [6]. As discussed, these equations

are applicable to both airborne and spaceborne imaging geometries and serve as a physical

basis for further algorithm development.
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4 Conclusions

Both high resolution Synthetic Aperture Radar (SAR) processing and SAR Ground Moving

Target Indication (SAR-GMTI) require that a highly accurate imaging geometry model

be first established. This can be quite easily accomplished for the case of an airborne

platform, which is assumed to be moving along a straight line and transmitting uniformly

spaced pulses. For an orbiting platform, the gravitational force plays a key role in defining

the satellite trajectory and its ground speed and, thus, must be taken into account. Also,

equations of motion of a moving target that accurately model a SAR system equipped with

multiple apertures (e.g. RADARSAT-2, TerraSAR-X) are evidently absent in the open

literature, partly because there were no multi-aperture spaceborne SARs in the unclassified

world prior to late 2007.

This short technical memo derives a set of equations of motion that accurately describes

a ground moving target in spaceborne multi-channel SAR imaging geometry. The target

range history model is derived in the Earth Centered, Earth-Fixed (ECEF) frame of refer-

ence using linearization for small angles as a function of the receive phase center.

The accuracy of the equations of motion derived in this short note have been tested and vali-

dated using the recently acquired RADARSAT-2 MODEX data. These equations of motion

have been shown to be applicable to both airborne and spaceborne imaging geometries and

serve as a physical basis for further algorithm development.
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Annex A: Acceleration in the ECEF Frame

In this annex, we would like to derive and express the acceleration vector As of an orbital

satellite in the Earth-Centered-Earth-Fixed reference frame. Let ωe be the earth’s angular

rotation speed, ignoring precession and mutation. The transformation matrix Γω from the

Earth-Centered-Inertial (ECI) frame to the ECEF frame is then given by

Γω =





cos(ωet) −sin(ωet) 0

sin(ωet) cos(ωet) 0

0 0 1



 . (A.1)

We begin our derivation with the satellite’s position vectors R̄s and Rs in the ECI (denoted

by the bar notation) and ECEF frames, respectively. The transformation of the satellite

position vector between the two reference frames can then be accomplished through the

following two equations:

R̄s = ΓωRs (A.2a)

Rs = Γ
T
ωR̄s . (A.2b)

Differentiating (A.2a) and (A.2b) with respect to time, we obtain

V̄s = ΓωVs + Γ̇ωΓ
T
ωR̄s

= ΓωVs +ωe





0 −1 0

1 0 0

0 0 0



R̄s (A.3a)

Vs = Γ
T
ωV̄s + Γ̇

T
ωR̄s

= Γ
T
ωV̄s + Γ̇

T
ωΓωRs

= Γ
T
ωV̄s +ωe





0 1 0

−1 0 0

0 0 0



Rs

= Γ
T
ωV̄s +ωe





Rsy

−Rsx

0



 . (A.3b)
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To get the satellite acceleration in the ECEF frame, we differentiate again (A.3a) with

respect to time:

As = Γ
T
ωĀs +2Γ̇T

ωV̄s + Γ̈
T
ωR̄s

= Γ
T
ωĀs +2Γ̇T

ωΓωVs +2Γ̇T
ωΓ̇ωRs + Γ̈

T
ωΓωRs (A.4a)

= Γ
T
ωĀs +2ωe





0 1 0

−1 0 0

0 0 0



Vs +ω2
e





1 0 0

0 1 0

0 0 0



Rs (A.4b)

= Γ
T
ωĀs +2ωe





Vsy

−Vsx

0



+ω2
e





Rsx

Rsy

0



 . (A.4c)

Ās is the earth’s gravitational field (or acceleration), which can be approximated by

Ās ≈−
GMe

R3
s

R̄s , (A.5)

where Me is the mass of the earth and G is the gravitational constant. This approximate

result may be insufficient. There are many available models that include higher spherical

harmonics [7].
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The modeling of a moving target for a single channel spaceborne SAR geometry has already

been accomplished to a high degree of accuracy by Eldhuset et al., but extending the model to

include a SAR system that is equipped with multiple apertures (e.g. RADARSAT-2, TerraSAR-X)

still requires further work. The purpose of this short technical memo is to do exactly that – to

derive a set of equations of motion of a ground moving target for a multi-channel spaceborne

SAR. These equations of motion will be shown to be applicable to both airborne and spaceborne

multi-channel SAR systems in stripmap mode.
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